当前位置:化工仪器网-反应设备网首页-技术文章列表-CEM Discover 2.0:微波自动进样器在有机化学优化中的应用

CEM Discover 2.0:微波自动进样器在有机化学优化中的应用

2024年06月03日 13:56 来源:培安有限公司

01 引言


在化学转化的新发现之后,随之而来的是反应优化这一既费时又繁琐的过程,紧接着还需要进行底物筛选。尽管利用加热块可以同时进行多个微量反应,但这种模式难以调整某些反应参数,导致手动执行的连续反应耗费了宝贵的时间。然而,与 CEM Discover® 2.0 微波反应器联合开发的 Autosampler 12 和 48 为研究人员提供了一种更加高效的方式来优化和筛选化学反应


方案 1:Hantzsch 二氢吡啶合成法


为了展示 Autosampler 所提供的改进简便性与效率,我们优化了通用的微波辅助 Hantzsch 二氢吡啶合成(方案1),随后将其应用于小型化学库的合成中。在 Hantzsch 二氢吡啶合成中,氨、醛以及(最常见)β-酮酯会经过一系列的缩合反应,最终生成1,4-二氢吡啶化合物。尽管这种二氢吡啶化合物通常被分离出来,但它可以自发地氧化成相应的取代吡啶。



02 材料与方法


试剂


4-茴香醛、氢氧化铵(28%)、苯甲醛、5,5-二甲基-1,3-环己酮、乙醇、乙酸乙酯、乙酰乙酸乙酯、2-糠醛、己烷,以及吡啶-2-甲醛来自 Sigma Aldrich 公司(密苏里州圣路易斯市)。


程序


反应设置

在一个装有搅拌子的10-mL容器中,加入醛(8.0 mmol,1.0当量)、28%氨水溶液(1.0 mL,8.0 mmol,1.0当量)以及β-酮酯(16.0 mmol,2.0当量)。随后,使用特氟隆内衬的硅胶盖将小瓶密封,并将其放置在自动进样器的队列架上。在启动一系列合成之前,每个实验都重复这一步骤。


方法编程

为了优化和研究 Hantzsch 二氢吡啶合成的范围,我们编程了一步动态方法。反应混合物被加热到特定温度并保持一定时间。(附加的动态方法参数包括:最大压力=300 psi,最大功率=300 W,PowerMax=关闭,以及搅拌=高)在启动一系列合成之前,我们为每个实验创建了一个动态方法,并将其分配给每个预先组装的反应容器位置。


产品分析

冷却后,通过薄层色谱法(己烷中含 30% 乙酸乙酯)对反应溶液进行分析。粗产品的纯度通过 GC-MS 测定。


03 结果


首先,我们使用乙酰乙酸乙酯和苯甲醛,测试了文献中确立的微波辅助 Hantzsch 二氢吡啶合成的一般条件。这些“固定功率”条件产生了不稳定的结果,包括不一致的加热曲线、产物转化率差以及内部容器压力升高(215-260 psi)(表1,条目1和2)。从这一点开始,我们采用了“动态”方法,为每次运行保持恒定的加热曲线和反应温度。


为了降低内部容器压力,我们考察了较低的反应温度(表1,条目3-5)。在 170°C 下保持 5 分钟后,观察到产物的转化率为 68%,尽管产生了高水平的未鉴定副产物(表1,条目3)。将反应温度降低到 150°C,产物的转化率达到了 83%,并且副产物的形成最少(表1,条目4)。进一步将反应温度降低到 130°C,产物转化率急剧下降(表1,条目5)。从这一点出发,认为 150°C 的反应温度最为合适


将反应时间延长到 150°C 下的 10 分钟对反应结果没有影响(表1,条目6);在 5 分钟和 10 分钟的反应时间后,观察到产物的转化率均为 83%,并且副产物的形成极少。正如预期的那样,随着反应时间的减少,产物的转化率也有所下降(表1,条目7)。因此,我们认为 5 分钟的反应时间最为合适


表 1. 微波辅助 Hantzsch 二氢吡啶合成中反应温度和时间的优化

条目

温度(℃)

时间(分钟:秒)

转换率(%)

1a

198

1:40

-

2a

188

1:40

-

3

170

5:00

68

4

150

5:00

83

5

130

5:00

53

6

150

10:00

83

7

150

3:00

70

8b

150

5:00

73

9c

150

5:00

59

a 我们编程了一个一步固定功率方法,以模拟文献中的先例。方法参数包括:功率=45 W,最高温度=250 °C,最高压力=300 psi,PowerMax=关闭,以及搅拌=高。

b 乙醇(2.0 mL)在反应设置期间加入。

c 额外的氨水溶液(1.0 mL)在反应设置期间加入。

表 2. 微波辅助 Hantzsch 二氢吡啶合成的底物范围

条目

β-酮酯

转换率(%)

1

乙酰乙酸乙酯

苯甲醛

83

2a

乙酰乙酸乙酯

4-甲氧基苯甲醛

68

3

乙酰乙酸乙酯

2-糖醛

86

4

乙酰乙酸乙酯

2-吡啶甲醛

60

5

5,5-二甲基-1,3-环己二酮

苯甲醛

99

a 反应时间=10分钟


在试图进一步提高产物产率的过程中,我们考察了乙醇作为溶剂的效果;然而,产物转化率却下降了10%(表1,条目8)。此外,我们还测试了额外添加一当量氨水溶液的效果,但也遭遇了产物产率的显著降低(表1,条目9)。在这些研究结束时,我们认为在 150°C 下进行 5 分钟的纯反应蕞适合库合成。这 9 个条件筛选反应在不到 2 小时内就顺利完成了。


在确定了最佳反应条件后,我们使用了一系列电子和立体结构不同的底物进行 Hantzsch 二氢吡啶合成。4-甲氧基苯甲醛2-糠醛2-吡啶甲醛(与乙酰乙酸乙酯一起)分别成功转化为产物,产率分别为 68%、86% 和 60%(表2,条目2-4)。值得注意的是,当将β-酮酯换成5,5-二甲基-1,3-环己二酮时,转化经历了定量的产物转化(表2,条目5)。这 4 个底物筛选反应在不到 1 小时内就顺利完成了


04 结论


Autosampler 12 和 48 使得反应优化和底物范围研究的方法变得简单高效。在本研究中,我们对通用的微波辅助 Hantzsch 二氢吡啶合成进行了优化,并将其应用于不同的底物。首先,我们运行了 9 个优化反应的队列,发现在 150°C 下加热 5 分钟产生了最佳的合成结果。接着,我们将 4 个不同的β-酮酯和醛组合置于这些最佳条件下,成功地获得了产物二氢吡啶。


参考文献  References

1) Torchy, S.; Cordonnier, G.; Barbry, D.; Vanden Eynde, J. J.“Hydrogen Transfer from Hantzsch 1,4-Dihydropyridines to Carbon-Carbon Double Bonds under Microwave Irradiation.”Molecules. 2002, 7, 528–533.

免责声明

  • 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其他方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。